Performance Measures for
Online Systems

John Ulmschneider and Patrick Mullin

System performance: an overview

Librarians assess a library automation system
by many parameters, such as the richness of its
functionality, the ease of use of its interface, and
its overall purchase and operating cost. One of
the most important criteria is a system’s perform-
ance. It is not uncommon for librarians to praise
or condemn a system based on performance alone.
But what do library managers mean when they
speak of “system performance’? The “perform-
ance” of a computer application system can mean
different things to different observers.!* At one
extreme, many librarians treat the functionality
of the applications software as the main criterion
of performance: what does the application soft-

FIGURE 1.

=

Performance measures for evaluating library
automation systems include something from both
ends of the spectrum. In general, library managers
are not concerned with the capabilities of the
hardware platform used for a system; they are
concerned only with the way the application soft-
ware performs for the user. Librarians also sharp-
ly distinguish responsiveness for interactive oper-
ations, where users query the application system
in real time, from batch operations, where a series
of programs is executed automatically by the
computer. The performance evaluation of a library
application system is assessed through three
parameters concerned primarily with interactive
operations:

Hardware evaluation compared with software evaluation

Hardware evaluation
—

Software evaluation

CPU speed in million instructions per second (MIPS)
Memory speed, caching

disk seek and read time

:\l.l_rnber and speed of communications channels

response time to interactive users

subroutine speed for boolean combinations

disk storage demands for data and work space
number of concurrent users or terminals supported

ware actually do, and how well or thoroughly
does it do those things? At the other extreme, the
computer industry has developed a number of
performance measures for computer systems that
distinguish the computing hardware's capabilities
from the way application software uses those
capabilities. Hardware evaluations center on such
Parameters as central processing unit (CPU)
Speed, data retrieval and transfer speed from
disks, memory architecture, and the like. Software
evaluations assess many aspects of the applica-
tion’s operations to build a final picture of its
performance: the application’s use of processing
resources, disk storage and retrieval demands,
instruction mix, response time, memory require-
ments, and other parameters (Figure 1).
—_—

John E. Ulmschneider is the Assistant Director for Library
Systems for the North Carolina State University Libraries.
Patrick J. Mullin is Systems Librarian at the University of
North Carolina at Chapel Hill and Interim Director of the
Tﬂl.nsle Research Libraries Network.

Response time: how quickly a computer sys-
tem delivers a response to a user query in an
interactive environment;

Application efficiency: what computing
resources (processor cycles, memory, disk space)
are required by software to deliver an adequate
response time; '

Capacity: the volume or amount of work a
system can perform with a given amount of hard-
ware resources, for instance, the number of con-
current searches it can perform.

The relationship between these performance
parameters is not straightforward. For instance,
suppose an application system is very efficient on
machine resources, with clever and tight code
that minimizes the use of memory. Such an appli-
cation might squeeze the most from the machine
resources available to it, but might deliver poor
response time because it does not use enough
memory to speed up, sort, and merge operations.
Or suppose an application delivers very fast

Fall 1990—197

response time, but requires enormous machine
resources to do so. Such an application likely will
be too expensive to maintain.

Because the relationships between perform-
ance parameters are complex, assessments of
library systems must include data on all three
performance variables. Library managers should
require library application programs to meet cer-
tain minimum standards. For instance, the system
ought not to require a supercomputer to perform
boolean searches and should take less than five
minutes to respond to interactive queries. Mana-
gers do not, however, expect them to show ideal
scores in all three areas.

Each of the three performance measures
lends itself to wide discrepancies in definition and
application. An “efficient” program can end up
using considerably greater memory resources
than an inefficient program if it seeks to minimize
the use of slow mechanical devices(e.g., disk
drives, tapes) by storing volumes of data in main
memory for instant access. On the other hand, a
system providing high capacity might do so only
under ideal conditions, for instance, when all the
online catalog queries are known item searches.
Because of these discrepancies, vendors and
buyers of library systems should define exactly
the nature of performance parameters expected
of a system. In general, efficiency and capacity in
purchase contracts are largely system-dependent
measures, and standards for their performance
pertain only to particular hardware-software
combinations. Librarians have reached a general
consensus, however, on response time: interactive
queries should average no more than three to five
seconds from transmission of a query to receiving
an answer.

Response time

Of the three parameters, response time is
both the most widely applied and least under-
stood measure. For most library managers, re-

... response time is both the
most widely applied and least
understood measure.

sponse time generally means the time between
transmission of a query to the system (by pressing
the return key) and the time when characters
first appear on the screen in response to the
query. Many factors in the application system
affect response time, among them the speed of
disk drives and how much the software uses

198—Fall 1990

them, the memory available of the application
software, and the number of concurrent users on
the system. Most measurements of response time,
however, include three distinct components:

(1) Transmission time: the time required
by the transmission channel to deliver queries
from the terminal to the computer, and data from
the computer to the terminal;

(2) Application response time: The time
required by the application after receiving a query
to process the query and to begin transmitting a
response to the terminal; and

(3) Display time: The time required by the
terminal to display the entire reply from the
computer.

Response time measures usually do not distin-
guish the contribution of each element to the
overall response time, even though users attribute
the entire response time solely to the application
software. Under normal circumstances, compon-
ents 1 and 3 make a negligible contribution to
response time, in the range of milliseconds. In
special circumstances, however, their contribution
may be significant. For instance, in local area
networks, propagation of queries and responses
through several miles of cables, translators,
bridges, and routers can introduce significant
delays. Modem connections may also introduce
considerable delay. Even directly wired connec-
tions can slow down response time if the line
speed is low or the output device is a printer.
Because of these factors, vendors of application
systems usually agree to meet response time cri-
teria only in the context of control over the entire
hardware plant, and they specify dedicated termi-
nals using the fastest and most secure communi-
cations possible.

How is response time actually measured?
Three approaches are possible. In the stopwatch
method, one evaluator enters a query to an online
catalog while a second evaluator times the query
with a stopwatch. The second evaluator starts the
timer at the instant the return key is pressed and
stops the timer at the instant the reply begins to
appear on the screen. Generally, the evaluators
employ a carefully designed script that exercises
most of the searching functions of the system in
simple and more complex searches. The response
time is averaged over all the searches and over a
number of sessions. By using a number of termi-
nals and users simultaneously, the evaluators can
mimic a real online environment with multiple
simultaneous searchers, subjecting the applica-
tion system to a stress test or benchmark test. In
its simplest form, a stress test measures the
responsiveness of a computer system as more and

more of its functions are used simultaneously.
Stress tests usually identify a peak load, or num-
ber of concurrent users, beyond which perform-
ance becomes unacceptable. (See Figure 2.)

The stopwatch method is simple to imple-
ment, cheap, flexible, and expandable. It is also,
by and large, a reliable method if done carefully.
Nonetheless, human reaction time, communica-
tion time, and other variables may affect the final

results.
FIGURE 2.

Typical response time under load revealed by stress test

20
19
18]
17 4
15 <
15 4
14 4 Note sharp degradation as load increases
13
o 12
£
510.
§ 93
g o
7
&
5 o
4 -
3 -
24
14
o T T T T T T T
0 10 20 30 40 50 80 70 80

number of lerminals

In the simulation method, a desktop compu-
ter or a simulation program on the library system’s
computer is equipped with a search script, similar
to that used in the stopwatch method, and is
connected to the library application program. The
desktop computer or the simulation program
transmits queries and receives replies from the
library application program, and measures very
Precisely the time between transmitting a query
and receiving a reply.

The simulation method requires modest tech-
nical expertise to implement. It retains all the
advantages of the stopwatch method while elimi-
nating variables introduced by human partici-
pants. Just as with the stopwatch method, evalu-
ators can establish a bank of computers, or a
number of simulation programs, to execute simul-
taneously the prepared search scripts in order to
subject a computer system to a stress test.

The system monitor method uses software on
the computer system itself to record response
time data on devices and software supported by
the system. Most general-purpose hardware plat-
forms for library automation systems provide
system software to record statistics on the per-
formance of a program in a number of areas: how
much memory it uses, how often it accesses disk
drives, how quickly it answers requests from

terminals, and how much data it sends to them.
Mainframe computers have used such programs
for years to generate billing data, and they have
tuned them to a high degree of accuracy and
comprehensiveness.

Both the stopwatch method and the simula-
tion method rely on searching scripts as models of
anticipated user behavior to gauge actual system
performance. The design of such scripts seldom
reflects user reality. (Recent attempts to base
scripts on statistical and qualitative evaluation of
transaction logs, which are verbatim records of
every query to a library automation system and
every response of the system to the user, are im-
proving the design of such scripts.) Instead, the
seripts are thorough exercises of every aspect of
an application system’s functionality, with a mix
of commands that cover every possible function
in the system. The application system’s response
time to such a mixture certainly reveals its
response in carrying out specific functions, but
may not reflect its actual responsiveness in
operational use.

The system monitor approach, in contrast, is
a strictly empirical one. Rather than develop a
model of user behavior, it exhaustively records an
application’s responses to actual users and search
loads. Since it is capable of analyzing the data
from hundreds of thousands of commands
entered over extended periods of time, it also
draws upon a much larger universe of experience
that any model can construct. As a result, its
measurements provide a more accurate and com-
plete picture of response time than user models
do and are free of biases resulting from a poorly
designed mix or scheduling of test queries.

The system monitor method has two addi-
tional advantages, First, it is not implemented as
a special test requiring staff participation, special
test computers, or special software. Monitor soft-
ware runs as part of the normal operating en-
vironment and generates reports on terminal
activity and response time as part of the daily
activity log of the system. Second, it provides a
much more detailed and comprehensive picture
of an application’s performance, including data
on its use of machine resources as well as response
time. Data provided by system monitor programs
bear importantly on understanding an applica-
tion's efficiency and throughput, for instance,

System monitors measure response time at
the point where the communications system con-
nects to the computer, so that communication
delays are not included in the response times.
Managers can use this data to evaluate software
performance independent of the communications

Fall 1990—199

plant and to help attribute response time prob-
lems to either software or communications. On
the other hand, the actual response time experi-
enced by a user is the most visible indication of an
online system’s performance. In general, library
managers supplement system monitor reports
with periodic monitoring of actual user response
time, including stopwatch measurements when
necessary.

Because of their inherent limitations, re-
sponse time measurements that require search
models are best limited to acceptance testing: the
final tests of functionality and performance before
a library accepts a vendor’s system and pays for it.
Managers may use them to strike periodic bench-
marks, but they should recognize that the models
do not usually reflect the actual use or response
time of the system. System monitors should be
used for pre-purchase tests by obtaining data
from operational sites; such data may point to
performance problems before acceptance. The
data may prove particularly useful if the desired
system is installed at a site closely matching the
profile of the purchasing site, with user popula-
tions similar in size, interests, and activity, and
identical hardware resources. Even under these
circumstances, system monitor results should not
be the basis of final acceptance for payment; it is
simply too easy to overlook differences between
one installation and another. After installation,
however, library managers should receive regular
system monitor data that reports actual perform-
ance of the software: response time, computer
resource use, and the like.

Numerous observers have raised two particu-
lar concerns with respect to measuring response
time in library systems.®* First, online catalog
searches vary widely in the amount of work they
require of a program. Many searches are direct,
known-item searches, where the program need
only retrieve single records. Other searches may
require locating, performing combinatorial opera-
tions with, and retrieving large sets of records,
Second, the definition of a “search” is open to
debate. Is a search concluded only when the user
locates the information required? Or should
library managers consider a search equivalent to
a transaction, defined as a single interaction
between user and computer?

Methods that rely on models address these
concerns by using search scripts that exercise
most of the functionality of the application soft-
ware. The scripts include searches that require
considerable processing as well as known-item
searches, and usually provide for multi-step
searches (e.g, perusing an index list, selecting a

200—Fall 1990

retrieval set, and then narrowing the set to find
the desired item). The system monitor method, on
the other hand, cannot distinguish difficult from
simple searches; it measures the response time
for individual transactions, regardless of their
type. System monitor methods compensate for
this limitation by processing a very large trans-
action volume, which ultimately produces a statis-
tically valid judgment of normal response time.

Efficiency and Capacity

The efficiency and capacity of library applica-
tions software are affected by a great many factors
in the library system taken as a whole: the hard-
ware platform, the programming language used to
implement the system, the architecture of the
application software, data storage techniques,
and even the operation of unrelated software.
Assessing the efficiency and capacity of a program
requires quantitative data, an intimate knowledge
of the hardware platform, and extensive experi-
ence with the general capabilities of software in a
given hardware environment.

A program is said to be efficient when it
performs work with optimal use of hardware
resources. Inefficient programs are obvious to
system managers; they require prodigious resour-
ces to perform simple tasks. Efficient programs
are not so easily pinpointed. Generally only close
examination of the actual code or architecture of
an efficient program reveals areas for improve-
ment (or admiration). For example, a program-
mer can improve the efficiency of a program by
decreasing disk drive access, memory resource
use, or CPU time to perform a given task. Effi-
ciency judgments extend to suites of applications
programs as well as to single programs, since
library applications often consist of a number of
programs performing different tasks in concert.
The overall architecture of a system can be con-
sidered efficient or inefficient, depending on how
it uses system resources.

Efficiency bears directly on capacity. Capacity
measures the amount of work a computer system
can perform given a certain mix of machine re-
sources and programs. Capacity relates to the
computer system as a whole, not just to a given
applications program, since both available hard-
ware resources and a program’s use of them
determines the amount of work possible. Efficient
programs make better use of hardware resources.
A computer running efficient programs can per-
form more work in any given machine configura-
tion than one with inefficient ones. For instance,
efficient programs may permit the system to

handle up to twenty concurrent users, while ineffi-
cient programs may reduce this capacity to only
ten or twelve. The types of work performed on a
computer system also affect its capacity. Certain
users or activities require more hardware resour-
ces than others and can affect overall capacity
significantly. For example, catalogers and other
technical support users editing the database
usually require a great deal more CPU support,
disk access, and the like than someone merely
searching the catalog.

The first step in measuring capacity is to
determine the amount and kinds of activities in
the computer system at any given time as well as
the various resource consumption and perform-
ance measurements of the system while engaged
in those activities. System monitor programs pro-
vide comprehensive data on how a computer
system is actually used throughout the day. Once
system monitors are in place to measure activity,
resource consumption, and response time, the
systems manager builds a resource use profile by
analyzing data from days or months of use. The
profile indicates peak resource consumption
periods, overall resource use, and the resources
consumed by particular application programs. A
system is said to reach capacity when either of
two events oceurs:

(1) Consumption of hardware resources
reaches defined maximum limits. The defined
maximum resource use of hardware platforms,
beyond which additional resources are recom-
mended, varies from manufacturer to manufac-
turer. Most manufacturers consider a CPU satur-
ated, for instance, at about eighty-five percent
average use. Disk storage reaches a maximum
when growth space is not sufficient for short-
term growth.

(2) Response time for online users degrades
below a defined maximum. When response time
degrades above an average of five seconds for
most transactions, for instance, the computer
system no longer has capacity for additional users.

Systems managers and librarians employ re-
source use profiles precisely to avoid reaching
capacity on a computer system. By monitoring
system resource consumption through frequent
profiles, managers can model future system
demand and project resource requirements neces-
sary to maintain adequate response time, disk
storage, and other resources.

A Management Example: Performance
Measures at TRLN

The Triangle Research Libraries Network
(TRLN) is a cooperative library automation pro-

jeet of Duke University in Durham, North Carolina
State University (NCSU) in Raleigh, and the Uni-
versity of North Carolina at Chapel Hill (UNC-
CH). TRLN has focused on the Bibliographic Infor-
mation System (BIS) as the core and first module
of an integrated library system. The circulation
control module is currently undergoing beta test-
ing at NCSU. A vendor-supplied acquisitions and
serials control system will be implemented by all
three institutions. The TRLN system is a distrib-
uted system. Tandem computers located on each
campus support the catalog for that campus.
TRLN’s unique software allows library patrons to
search any one of the catalogs in the network or
to search multiple catalogs simultaneously, dis-

FIGURE 3.

Summary Terminal Use And Response Time
Report By Terminal

DATE OF THIS REPORT: 03/06/90 RUN TIME: 04:10:56 AM
AVERAGE

TERMINAL-NAME REP-DATE TOTTRAN RESPONSE

$ATPO #VAX1 03/05/90 219.00 4.56
SATPO #VAX2 03/06/90 674.00 488
$SATPO #VAX3 03/05/90 92.00 2,67
SATPO #VAX4 03/05/90 666.00 3.66
SATP1 #DCAL 03/05/90 1089.00 4.20
SATP1 #DCA2 03/05/90 76800 3.64
$SATP1 #VAXH 03/06/90 200.00 400
$SATP1 #VAXE 03/06/90 481.00 3.60
$ATP2 #DCA3 03/05/90 623.00 3.83
SATP2 #DCA4 03/05/90 961.00 4.19
SATP2 #DCAB 03/05/90 164.00 3.30
SATP2 #DCAG 03/06/90 534.00 3.60
SATP3 #DCALO 03/06/90 423.00 3.60
SATP3 #DCAT 03/05/90 1089.00 3.84
SATP3 #DCAS 03/05/90 TI7.00 453
SATP3 #DCA9 03/05/90 263.00 4.11
SATP4 #DCA11 03/06/90 773.00 4.69
SATP4 #DCA12 03/05/90 84800 445
$BSCTR33 #BASS1 03/05/90 307.00 4.38
$BSCTR33 #BASS3 03/05/90 76.00 807
$BSCTR33 #CIRC1L 03/056/90 66.00 3.24
$BSCTR33 #HUMI '03/05/90 367.00 3.561
$BSCTR33 #HUM2 03/05/90 10000 3.72
$BSCTR33 #HUM3 03/05/90 170.00 443
$BSCTR34 #CHEM1 03/06/90 126.00 418
$BSCTR36 #PUBBI 03/05/90 786.00 3.67
$BSCTR36 #PUBB10 03/05/90 811.00 359
$BSCTR36 #PUBB11 03/05/90 786.00 371
$BSCTR36 #PUBB12 03/056/90 52000 430
$BSCTR36 #PUBB2 03/05/90 302.00 4.76
$BSCTR36 #PUBB3 03/05/90 529.00 4.02
$BSCTR36 #PUBB4 03/05/90 333.00 383
$BSCTR36 #PUBB5 03/05/90 1286.00 384
$BSCTR36 #PUBB6 03/05/90 861.00 407

Response time average per transaction for all terminals;
3.80 seconds
Total number of transactions for all terminals: 32,644.00
NOTE: A transaction is equal to reading a command and
outputting a response to the command.

Fall 1990—201

playing the results as a merged retrieval set.

The three TRLN universities use two system
monitor tools available on their systems to gener-
ate and analyze performance data. The system
resource and performance monitor software
MEASURE, available as part of the Tandem oper-
ating system software, collects detailed data on
terminal response time, application resource use,
and other items of interest (e.g., communication
line activity, disk drive accesses). ENLIGHTEN, a
third-party product from Software Professionals,
Inc., can be used with MEASURE-created files to
construct graphic representations of the data
either online dynamically or in print format.

The TRLN libraries use MEASURE to collect
response time data, to analyze software efficiency
and pinpoint areas for improvement, and for
capacity modeling and projection. Capacity
modeling and efficiency analysis requires the
collection and analysis of enormous volumes of
data, usually on a great many hardware and
software parameters simultaneously. Because of
the volume, this kind of data is collected only
periodically, and then through well-defined sam-
ples of system activity throughout the day (see
below). On the other hand, data on the number of
transactions on the system and the average
response time for those transactions by port or
terminal (Figure 3) and by time of day (Figure 4)
is monitored constantly. The transaction response
time reported by MEASURE is not the user-appar-
ent response time. MEASURE calculates only the
response time from the moment a command is
received by the Tandem system to the moment a
response is sent from the Tandem to the user
device. It does not include communication time or
display time.

This basic transaction and response time
information is used in a variety of ways at the
three universities: to prepare reports and track
trends; to justify, plan, and budget equipment
purchases; and to analyze the workload on and
balance of the composite system. Each of the
three universities reports the average number of
daily transactions on its system and the average
response time in the monthly TRLN Project Status
Report. Despite different hardware configura-
tions, the data provides some indication of the
relative use of the three Tandem-based systems.
For instance, in the fall of 1989, each TRLN insti-
tution experienced a sharp increase in the level of
transactions, some by nearly forty percent. Other
statistics, collected within the libraries, corrobor-
ated this increased use of library services. Circula-
tion, for instance, increased nearly thirty percent
at NCSU.

202—Fall 1990

FIGURE 4.

Summary Terminal Use And Response Time
Report By Time of Day

DATE OF THIS REPORT: 03/06/90 RUN TIME: (4:11:54 AM

AVERAGE TOTAL
FROM-TIME TO-TIME RESPONSE TRANSACTIONS
08:00:00 AM 08:30:00 AM 2.38 413.00
08:30:00 AM 09:00:00 AM 2.74 784.00
09:00:00 AM 09:30:00 AM 294 764.00
09:30:00 AM 10:00:00 AM 3.13 834.00
10:00:00 AM 10:30:00 AM 3.73 1143.00
10:30:00 AM 11:00:00 AM 4.29 1528.00
11:00:00 AM 11:30:00 AM 5.05 1665.00
11:30:00 AM 12:00.00 PM 7.15 1777.00
12:00:00 PM 12:30:00 PM 4.80 1649.00
12:30:00 PM 0L00:00 PM 3.71 1112.00
01:00:00 PM 01:30:00 PM 3.76 1127.00
01:30:00 PM 02:00:00 PM 3.83 1264.00
02:00:00 PM 02:30:00 PM 4.58 1580.00
02:30:00 PM 03:00:00 PM 427 1390.00
03:00:00 PM 03:30:00 PM 3.81 118200
03:30:00 PM 04:00:00 PM 3.98 1430.00
04:00:00 PM 04:30:00 PM 4.07 1227.00
04:30:00 PM 05:00:00 PM 4,18 1383.00
05:00:00 PM 05:30:00 PM 2.96 950.00
05:30:00 PM 06:00:00 PM 293 T88.00
06:00:00 PM 06:30:00 PM 3.07 860.00
06:30:00 PM 07:00:00 PM 2.73 586.00
07:00:00 PM 07:30:00 PM 293 582.00
07:30:00 PM 08:00:00 PM 3.61 1034.00
08:00:00 PM 08:30:00 PM 341 1171.00
08:30:00 PM 09:00:00 PM 3.76 978.00
09:00:00 PM 09:30:00 PM 3.27 842.00
09:30:00 PM 10:00:00 PM 2.62 562.00
10:00:00 PM 10:30:00 PM 261 832.00
10:30:00 PM 11:00:00 PM 2.96 452.00
11:00:00 PM 11:30:00 PM 1.92 202.00

Response time average per transaction for all terminals:
3.80 seconds

Total number of transactions for all terminals; 32,644.00

NOTE: A transaction is equal to reading a command and
outputting a response to the command.

On each campus, this basic transaction and
response time information is reported to the
library administration, library staff, and library
users (e.g., Figure 5). It can be used to demon-
strate progress or to warn of potential problems.
In 1987, for instance, TRLN began to re-examine
its software programs, rewriting many of them to
increase the efficiency of the system. The resulting
thirty-five percent increase in efficiency provided
sufficient processing reserve to absorb the sharp
increase in transaction levels in the fall of 1989
and still maintain “acceptable” response time. On
the campus of UNC-CH, the data has been used to
monitor the need for additional terminals in the
House Undergraduate Library based upon the
average number of transactions per day per port

or terminal. As a result, in the past two years, the
Number of available terminals in that location has
been doubled.

The records of terminal activity in a particu-
lar area also can be used to question the need for
4 terminal in areas of light or low use. For
instance, at UNC-CH, a terminal in one depart-
ment generated only ninety-nine commands in a
two-week period during February 1990. On the
basis of this data alone, it would seem that a term-
inal in this area was not justified. Such data
should mandate a review of justifications for
Maintaining a terminal in little-used locations.

The daily statistics can be used to schedule
batch jobs which contend with online functions
for resources. Through a semester, TRLN staff
monitor busy times and busy days of the week. As
might be expected, activity declines sharply late
Friday afternoon. Tuesdays, however, are as busy
as or busier than Mondays. TRLN staff generally
schedule extensive processing runs during low-
use periods.

Terminal activity levels also can help identify
physical conditions that lead to heavy use of
terminals. In the cluster area of UNC-CH’s Davis
Library, for instance, one terminal is more heavily
used than any other. Two characteristics distin-
Zuish this terminal: (1) it has more room for users
to set materials down on either side of the termi-
nal than do other terminals in the cluster, and (2)
there is ample “personal” space because it is
Separated from other terminals, so that no other
terminals (and hence no other users) are close by.

In planning and budgeting for the normal
growth of systems, the pattern of current use can

be called upon to project future needs. The in-
crease in transaction levels needs to be closely
monitored to determine the need for additional
terminals and the need for additional processor
capacity. This growth in transaction levels, cou-
pled with the increase in data base coverage
through retrospective conversion and new ser-
vices such as the implementation of the TRLN
Circulation Control Subsystem, must all be fac-
tored into planning the annual budget allocations
and biennial budget proposals.

Dial access is one area where this data should
be carefully monitored. A frequent question about
remote access is: how much is enough? The sim-
plest answer is that there is no single answer; it is
always changing. The question should be how to
monitor its use and to plan for its growth. Unfor-
tunately, managers cannot know how many so-
called “invisible users” exist, and these users as a
rule do not inform managers about problems in
accessing the online catalog. Even if users fre-
quently encounter busy signals when they try to
access the catalog, library managers may never
find out that their remote access ports are con-
stantly busy. In cases where the majority of remote
access comes from links into existing campus net-
works, there may be no easy method to determine
how often users are denied access to the catalog
because its network slots are filled. (Interestingly,
while in-house use increased dramatically at UNC-
CH in fall 1989, dial access use showed no corre-
sponding increase.)

MEASURE and ENLIGHTEN are used to moni-
tor processor loads, memory use, disk activity, and
other processes. With these tools, the systems

FIGURE 5.
Number of System Transactions Transaction Response Time
. Daily Average Daily Average
40 THOUSANDS Sicdite
35
30
25
20
15
10 Pl e UE (e Tt L. (IR L L L | S}
1‘-&9 qey' \p‘ ‘3‘ \bﬁ ?}9 \«}\ P"% Q&Q 00"' ‘\o“ QEF' s-;;“ qep \p“ ‘3‘ \59‘3 3\}“ s‘-\)\ 9}% ggﬂ 00"‘ ‘\o'“ ‘0'3‘0
MONTH MONTH
1989 1988 1990 1989 1988 1990

Collected: Monday — Friday

Collected: Monday — Friday

Fall 1990—203

manager can generate graphical displays showing
the use of processor capacity and memory resour-
ces, and the distribution and timing of disk use
among multiple disk drives. In a multi-processor
configuration, the tools can show how the load is
distributed over the processors (e.g., where the
load is heaviest and where the load is lightest). All
of this information is necessary to “balance” or
“tune” the system load across the available pro-
cessors and disks. System tuning directly impacts
the efficiency of the system and the user-apparent
response time. As hardware is added or new
programs installed, the resource balance must be
re-examined and the system tuned to preserve
optimal use of resources,

BIS is implemented as multiple copies of a
suite of programs. One advantage to this approach
is to provide redundancy in the event of a system
problem or crash. NCSU, for instance, runs six
copies of the BIS software. If a problem occurs on
one copy, it affects only one-sixth of the terminals.
The terminals are distributed across the six sys-
tems based upon the load level, location, type of
activity, and other factors. As new copies of the
software are added to the system, the systems
manager can use daily transaction data to redis-
tribute terminals and maintain optimal trans-
action balance among the copies.

In addition to load balancing, these perform-
ance measurement tools can be used with the
individual programs to gauge their relative effi-
ciency and to identify where improvements can be
made. In one project at TRLN, MEASURE was
used to calculate the CPU time in milliseconds per
transaction for each program.® A program could
then be selected for closer serutiny and MEASURE
was again used to identify, within the program
code, paragraphs that used a large percentage of
CPU time. At this level of detail, problems general-
ly become fairly easy to recognize and correct.
TRLN used such procedures to achieve a thirty-
five percent reduction in CPU use.

Conclusion

Librarians make use of a variety of tools and
techniques to assess the performance of library
systems. The different stages in the life eycle of a
system require different performance measures
that deliver data appropriate to the decisions
required for each stage. During the initial acquisi-
tion of a system, performance measures that
deliver benchmark and peak load data, such as
simulation and stopwatch response time mea-
sures, are crucial to deciding the suitability of a
product to a given library’s environment, and they
figure importantly in developing the initial hard-

204—Fall 1990

ware configuration for installation. Throughout
the production life of a system, system monitor
data provides regular assessments of the capacity,
response time, and utilization growth of the sys-
tem. In particular, library managers closely moni-
tor response time, because it remains the single
most important determinant of user satisfaction.
At the end of the life cycle, system monitor data
forms a significant part of the management data
required for functional design, performance speci-
fications, and hardware configuration for migra-
tion to a new library system.

Performance measurement tools provide
basic management data to support a variety of
decision points during the production life of a sys-
tem. Initial purchase, system tuning, terminal
allocation, load balancing, optimal timing for
resource-intensive processing, and system migra-
tion all depend upon comprehensive data con-
cerning the kinds of activities and their resource
demands on the system. It behooves library mana-
gers to develop an understanding of the nature
and use of performance measures, to become
familiar with different performance measures,
and to ensure that their systems provide the data
they require for system management decisions.

References
L. “Special Section: Measuring System Performance,” Informa-
tion Technology and Libraries 7 (June 1988): 173-97.
2. Jerry V. Caswell, “Performance evaluation of computerized
library systems,” in Advances in Library Automation and Net-
working, vol. 2, ed. Joe A. Hewitt (Greenwich, Conn.: JAI Press,
1988).
3. Clifford A. Lynch, “Response time measurement and per-
formance analysis in public access information retrieval Sys-
tems," Information Technology and Libraries 7 (June 1988):
177-83.
4. Robert N. Bland, “Evaluating the performance of the online
public access catalog: a redefinition of basic measures,” North
Carolina Libraries vol. 47 (Fall 1989): 168-73.
5. Gwyneth M. Duncan, “Using MEASURE to identify perform-
ance bugs in COBOL programs,” Tandem Users’ Jowrnal 9
(Nov./Dec. 1988): 13. !

‘“Anyone can learn just
about anything they want
to know by using the
library. It’s the means for
completing our quest.”

—Gov. Jim Martin speaking August 1990 to about 150
people at a regional Governor's Conference on Library
and Information Services at the Public Library of
Charlotte and Mecklenburg County in uptown Charlotte.

